Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Syst Evol Microbiol ; 73(10)2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37824181

RESUMO

Strain 16-5T, a mesophilic methanotroph of the genus Methylococcus, was isolated from rice field soil sampled in Chungcheong Province, Republic of Korea. Strain 16-5T had both particulate and soluble methane monooxygenases and could only grow on methane and methanol as electron donors. Strain 16-5 T cells are Gram-negative, white to light tan in color, non-motile, non-flagellated, diplococcoid to cocci, and have the typical type I intracytoplasmic membrane system. Strain 16-5T grew at 18-38 °C (optimum, 27 °C) and at pH 5.0-8.0 (optimum, pH 6.5-7.0). C16 : 1 ω7c (38.8%), C16 : 1 ω5c (18.8%), C16 : 1 ω6c (16.8%) and C16 : 0 (16.9%) were the major fatty acids, and phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and an unidentified phospholipid were the major polar lipids. The main respiratory quinone was methylene-ubiquinone-8. Strain 16-5T displayed the highest 16S rRNA gene sequence similarities to other taxonomically recognized members of the genus Methylococcus, i.e. Methylococcus capsulatus TexasT (98.62%) and Methylococcus geothermalis IM1T (98.49 %), which were its closest relatives. It did, however, differ from all other taxonomically described Methylococcus species due to some phenotypic differences, most notably its inability to grow at temperatures above 38 °C, where other Methylococcus species thrive. Its 4.34 Mbp-sized genome has a DNA G+C content of 62.47 mol%, and multiple genome-based properties such as average nucleotide identity and digital DNA-DNA hybridization value distanced it from its closest relatives. Based on the data presented above, this strain represents the first non-thermotolerant species of the genus Methylococcus. The name Methylococcus mesophilus sp. nov. is proposed, and 16-5T (=JCM 35359T=KCTC 82050T) is the type strain.


Assuntos
Methylococcus , Oryza , Ácidos Graxos/química , RNA Ribossômico 16S/genética , Composição de Bases , Filogenia , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Análise de Sequência de DNA , Fosfolipídeos/química , Metano
2.
Int J Syst Evol Microbiol ; 70(10): 5520-5530, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32910751

RESUMO

A Gram-stain-negative, aerobic, non-motile and coccoid methanotroph, strain IM1T, was isolated from hot spring soil. Cells of strain IM1T were catalase-negative, oxidase-positive and displayed a characteristic intracytoplasmic membrane arrangement of type I methanotrophs. The strain possessed genes encoding both membrane-bound and soluble methane monooxygenases and grew only on methane or methanol. The strain was capable of growth at temperatures between 15 and 48 °C (optimum, 30-45 °C) and pH values between pH 4.8 and 8.2 (optimum, pH 6.2-7.0). Based on phylogenetic analysis of 16S rRNA gene and PmoA sequences, strain IM1T was demonstrated to be affiliated to the genus Methylococcus. The 16S rRNA gene sequence of this strain was most closely related to the sequences of an uncultured bacterium clone FD09 (100 %) and a partially described cultured Methylococcus sp. GDS2.4 (99.78 %). The most closely related taxonomically described strains were Methylococcus capsulatus TexasT (97.92 %), Methylococcus capsulatus Bath (97.86 %) and Methyloterricola oryzae 73aT (94.21 %). Strain IM1T shared average nucleotide identity values of 85.93 and 85.62 % with Methylococcus capsulatus strains TexasT and Bath, respectively. The digital DNA-DNA hybridization value with the closest type strain was 29.90 %. The DNA G+C content of strain IM1T was 63.3 mol% and the major cellular fatty acids were C16 : 0 (39.0 %), C16 : 1 ω7c (24.0 %), C16 : 1 ω6c (13.6 %) and C16 : 1 ω5c (12.0 %). The major ubiquinone was methylene-ubiquinone-8. On the basis of phenotypic, genetic and phylogenetic data, strain IM1T represents a novel species of the genus Methylococcus for which the name Methylococcus geothermalis sp. nov. is proposed, with strain IM1T (=JCM 33941T=KCTC 72677T) as the type strain.


Assuntos
Fontes Termais/microbiologia , Methylococcus/classificação , Filogenia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Methylococcus/isolamento & purificação , Hibridização de Ácido Nucleico , Oxigenases/genética , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Ubiquinona/química
3.
Biotechnol Bioeng ; 114(2): 344-354, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27571389

RESUMO

A system capable of handling a large volumetric gas fraction while providing a high gas to liquid mass transfer is a necessity if the metanotrophic bacterium Methylococcus capsulatus is to be used in single cell protein (SCP) production. In this study, mixing time and mass transfer coefficients were determined in a 0.15 m3 forced flow U-loop fermenter of a novel construction. The effect on the impeller drawn power when a gas was introduced into the system was also studied. Mixing time decreased and mass transfer increased with increasing volumetric liquid flow rate and specific power input. This happened also for a large volume fraction of the gas, which was shown to have only minor effect on the power drawn from the pump impeller. Very large mass transfer coefficients, considerably higher than those obtainable in an STR and previous tubular loop reactors, could be achieved in the U-loop fermenter equipped with static mixers at modest volumetric liquid and gas flow rates. Biotechnol. Bioeng. 2017;114: 344-354. © 2016 Wiley Periodicals, Inc.


Assuntos
Reatores Biológicos , Modelos Teóricos , Desenho de Equipamento , Fermentação , Gases , Methylococcus/metabolismo , Projetos Piloto
4.
Nat Commun ; 7: 11900, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27301270

RESUMO

An industrial process for the selective activation of methane under mild conditions would be highly valuable for controlling emissions to the environment and for utilizing vast new sources of natural gas. The only selective catalysts for methane activation and conversion to methanol under mild conditions are methane monooxygenases (MMOs) found in methanotrophic bacteria; however, these enzymes are not amenable to standard enzyme immobilization approaches. Using particulate methane monooxygenase (pMMO), we create a biocatalytic polymer material that converts methane to methanol. We demonstrate embedding the material within a silicone lattice to create mechanically robust, gas-permeable membranes, and direct printing of micron-scale structures with controlled geometry. Remarkably, the enzymes retain up to 100% activity in the polymer construct. The printed enzyme-embedded polymer motif is highly flexible for future development and should be useful in a wide range of applications, especially those involving gas-liquid reactions.


Assuntos
Bioimpressão , Metano/metabolismo , Metanol/metabolismo , Oxigenases/metabolismo , Reatores Biológicos , Estabilidade Enzimática , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Methylococcus/enzimologia , Material Particulado/química , Polietilenoglicóis/química
5.
Mikrobiologiia ; 82(5): 515-27, 2013.
Artigo em Russo | MEDLINE | ID: mdl-25509389

RESUMO

Structural and functional characteristics of the regular glycoprotein layers in prokaryotes are analyzed with a special emphasis on aerobic methanotrophic bacteria. S-layers are present at the surfaces of Methylococcus, Methylothermus, and Methylomicrobium cells. Different Methylomicrobium species either synthesize S-layers with planar (p2, p4) symmetry or form cup-shaped or conicalstructures with hexagonal (p6) symmetry. A unique, copper-binding polypeptide 'CorA'/MopE (27/45 kDa), which is coexpressed with the diheme periplasmic cytochrome c peroxidase 'CorB'/Mca (80 kDa) was found in Methylomicrobium album BG8, Methylomicrobium alcaliphilum 20Z, and Methylococcus capsulatus Bath. This tandem of the surface proteins is functionally analogous to a new siderophore, methanobactin. Importantly, no 'CorA'/MopE homologue was found in methanotrophs not forming S-layers. The role of surface proteins in copper metabolism and initial methane oxidation is discussed.


Assuntos
Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Glicoproteínas de Membrana/metabolismo , Methylococcus/metabolismo , Methylococcus/ultraestrutura
6.
Chemistry ; 18(13): 3955-68, 2012 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-22354807

RESUMO

The dioxygen activation of a series of Cu(I)Cu(I)Cu(I) complexes based on the ligands (L) 3,3'-(1,4-diazepane- 1,4-diyl)bis(1-{[2-(dimethylamino)ethyl](methyl)amino}propan-2-ol)(7-Me) or 3,3'-(1,4-diazepane-1,4-diyl)bis(1-{[2-(diethylamino)ethyl](ethyl)amino}propan-2-ol)(7-Et) forms an intermediate capable of mediating facile O-atom transfer to simple organic substrates at room temperature. To elucidate the dioxygen chemistry, we have examined the reactions of 7-Me, 7-Et, and 3,3'-(1,4-diazepane-1,4-diyl)bis[1-(4-methylpiperazin-1-yl)propan-2-ol] (7-N-Meppz) with dioxygen at -80, -55, and -35 °C in propionitrile (EtCN) by UV-visible, 77 K EPR, and X-ray absorption spectroscopy, and 7-N-Meppz and 7-Me with dioxygen at room temperature in acetonitrile (MeCN) by diode array spectrophotometry. At both -80 and -55 °C, the mixing of the starting [Cu(I)Cu(I)Cu(I)(L)](1+) complex (1) with O(2)-saturated propionitrile (EtCN) led to a bright green solution consisting of two paramagnetic species: the green dioxygen adduct [Cu(II)Cu(II)(µ-η(2):η(2)-peroxo)Cu(II)(L)](2+) (2) and the blue [Cu(II)Cu(II)(µ-O)Cu(II)(L)](2+) species (3). These observations are consistent with the initial formation of [Cu(II)Cu(II)(µ-O)(2)Cu(III)(L)](1+)(4), followed by rapid abortion of this highly reactive species by intercluster electron transfer from a second molecule of complex 1 to give the blue species 3 and subsequent oxygenation of the partially oxidized [Cu(II)Cu(I)Cu(I)(L)](2+)(5) to form the green dioxygen adduct 2. Assignment of 2 to [Cu(II)Cu(II)(µ-η(2):η(2)-peroxo)Cu(II)(L)](2+) is consistent with its reactivity with water to give H(2)O(2) and the blue species 3, as well as its propensity to be photoreduced in the X-ray beam during X-ray absorption experiments at room temperature. In light of these observations, the development of an oxidation catalyst based on the tricopper system requires consideration of the following design criteria: 1) rapid dioxygen chemistry; 2) facile O-atom transfer from the activated cluster to substrate; and 3) a suitable reductant to rapidly regenerate complex 1 to accomplish efficient catalytic turnover.


Assuntos
Cobre/química , Modelos Químicos , Compostos Organometálicos/química , Oxigênio/química , Espectroscopia de Ressonância de Spin Eletrônica , Methylococcus/química , Estrutura Molecular , Oxirredução
7.
Huan Jing Ke Xue ; 32(5): 1489-96, 2011 May.
Artigo em Chinês | MEDLINE | ID: mdl-21780610

RESUMO

The aim of this study was to determine the effect of long-term (16 years) application of nitrogen fertilizer on the diversity of nitrifying genes (amoA and hao) in paddy soil on the basis of long-term paddy field experimental station (started in 1990) located in Taoyuan, with the molecular approaches of PCR, constructing libraries and sequencing. The fertilizer was urea and no fertilizer was as control. The Shannon index showed that long-term application of nitrogen fertilizer made the diversity of amoA gene descend while no effect on the diversity of hao gene. The LIBSHUFF statistical analyses demonstrated that both amoA and hao libraries of CK and N treatments were significantly different from each other and the rarefaction curves of libraries failed to meet the plateaus indicating that there were lots kinds of genes haven't been detected. The results of blasting with GenBank and the phylogenetic tree showed that the amoA genes detected in our study had a similarity with the uncultured gene of amoA, which showed some similar to Nitrosospira. Otherwise, the hao genes cloned showed a relationship to the genes of cultured bacteria such as Silicibacteria, Nitrosospira and Methylococcus, and the hao genes found in the N treatment dominated in alpha-Proteobacteria. These results suggest that long-term fertilization of nitrogen had significant impacts on the diversity or community of amoA and hao genes.


Assuntos
Fertilizantes , Genes Bacterianos , Nitrificação , Nitrogênio , Oryza/crescimento & desenvolvimento , Microbiologia do Solo , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Variação Genética , Methylococcus/genética , Methylococcus/crescimento & desenvolvimento , Nitrosomonas/genética , Nitrosomonas/crescimento & desenvolvimento , Proteobactérias/genética , Proteobactérias/crescimento & desenvolvimento , Solo/análise , Fatores de Tempo
8.
J Am Chem Soc ; 133(19): 7384-97, 2011 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-21517016

RESUMO

The methane and toluene monooxygenase hydroxylases (MMOH and TMOH, respectively) have almost identical active sites, yet the physical and chemical properties of their oxygenated intermediates, designated P*, H(peroxo), Q, and Q* in MMOH and ToMOH(peroxo) in a subclass of TMOH, ToMOH, are substantially different. We review and compare the structural differences in the vicinity of the active sites of these enzymes and discuss which changes could give rise to the different behavior of H(peroxo) and Q. In particular, analysis of multiple crystal structures reveals that T213 in MMOH and the analogous T201 in TMOH, located in the immediate vicinity of the active site, have different rotatory configurations. We study the rotational energy profiles of these threonine residues with the use of molecular mechanics (MM) and quantum mechanics/molecular mechanics (QM/MM) computational methods and put forward a hypothesis according to which T213 and T201 play an important role in the formation of different types of peroxodiiron(III) species in MMOH and ToMOH. The hypothesis is indirectly supported by the QM/MM calculations of the peroxodiiron(III) models of ToMOH and the theoretically computed Mössbauer spectra. It also helps explain the formation of two distinct peroxodiiron(III) species in the T201S mutant of ToMOH. Additionally, a role for the ToMOD regulatory protein, which is essential for intermediate formation and protein functioning in the ToMO system, is advanced. We find that the low quadrupole splitting parameter in the Mössbauer spectrum observed for a ToMOH(peroxo) intermediate can be explained by protonation of the peroxo moiety, possibly stabilized by the T201 residue. Finally, similarities between the oxygen activation mechanisms of the monooxygenases and cytochrome P450 are discussed.


Assuntos
Metano/química , Methylococcus/enzimologia , Oxigenases de Função Mista/química , Oxigênio/química , Oxigenases/química , Tolueno/química , Sequência de Aminoácidos , Domínio Catalítico , Simulação por Computador , Cristalografia por Raios X , Ligação de Hidrogênio , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Oxigenases/metabolismo
9.
Environ Sci Technol ; 44(1): 400-5, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20039753

RESUMO

Methane-oxidizing bacteria are ubiquitous in the environment and are globally important in oxidizing the potent greenhouse gas methane. It is also well recognized that they have wide potential for bioremediation of organic and chlorinated organic pollutants, thanks to the wide substrate ranges of the methane monooxygenase enzymes that they produce. Here we have demonstrated that the well characterized model methanotroph Methylococcus capsulatus (Bath) is able to bioremediate chromium(VI) pollution over a wide range of concentrations (1.4-1000 mg L(-1) of Cr(6+)), thus extending the bioremediation potential of this major group of microorganisms to include an important heavy-metal pollutant. The chromium(VI) reduction reaction was dependent on the availability of reducing equivalents from the growth substrate methane and was partially inhibited by the metabolic poison sodium azide. X-ray spectroscopy showed that the cell-associated chromium was predominantly in the +3 oxidation state and associated with cell- or medium-derived moieties that were most likely phosphate groups. The genome sequence of Mc. capsulatus (Bath) suggests at least five candidate genes for the chromium(VI) reductase activity in this organism.


Assuntos
Cromo/metabolismo , Recuperação e Remediação Ambiental , Metano/metabolismo , Methylococcus/metabolismo , Microscopia Eletrônica de Transmissão , Oxirredução , Análise Espectral/métodos
10.
J Biol Chem ; 283(20): 13897-904, 2008 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-18348978

RESUMO

Proteins can coordinate metal ions with endogenous nitrogen and oxygen ligands through backbone amino and carbonyl groups, but the amino acid side chains coordinating metals do not include tryptophan. Here we show for the first time the involvement of the tryptophan metabolite kynurenine in a protein metal-binding site. The crystal structure to 1.35 angstroms of MopE* from the methane-oxidizing Methylococcus capsulatus (Bath) provided detailed information about its structure and mononuclear copper-binding site. MopE* contains a novel protein fold of which only one-third of the structure displays similarities to other known folds. The geometry around the copper ion is distorted tetrahedral with one oxygen ligand from a water molecule, two histidine imidazoles (His-132 and His-203), and at the fourth distorted tetrahedral position, the N1 atom of the kynurenine, an oxidation product of Trp-130. Trp-130 was not oxidized to kynurenine in MopE* heterologously expressed in Escherichia coli, nor did this protein bind copper. Our findings indicate that the modification of tryptophan to kynurenine and its involvement in copper binding is an innate property of M. capsulatus MopE*.


Assuntos
Proteínas da Membrana Bacteriana Externa/fisiologia , Proteínas de Bactérias/química , Cobre/química , Methylococcus/metabolismo , Oxigênio/química , Triptofano/química , Proteínas da Membrana Bacteriana Externa/química , Sítios de Ligação , Clonagem Molecular , Escherichia coli/metabolismo , Cinética , Cinurenina/química , Ligantes , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
11.
FEMS Microbiol Ecol ; 62(1): 24-31, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17725622

RESUMO

Temperature change affects methane consumption in soil. However, there is no information on possible temperature control of methanotrophic bacterial populations. Therefore, we studied CH(4) consumption and populations of methanotrophs in an upland forest soil and a rice field soil incubated at different temperatures between 5 and 45 degrees C for up to 40 days. Potential methane consumption was measured at 4% CH(4). The temporal progress of CH(4) consumption indicated growth of methanotrophs. Both soils showed maximum CH(4) consumption at 25-35 degrees C, but no activity at >40 degrees C. In forest soil CH(4) was also consumed at 5 degrees C, but in rice soil only at 15 degrees C. Methanotroph populations were assessed by terminal restriction fragment length polymorphism (T-RFLP) targeting particulate methane monooxygenase (pmoA) genes. Eight T-RFs with relative abundance >1% were retrieved from both forest and rice soil. The individual T-RFs were tentatively assigned to different methanotrophic populations (e.g. Methylococcus/Methylocaldum, Methylomicrobium, Methylobacter, Methylocystis/Methylosinus) according to published sequence data. Two T-RFs were assigned to ammonium monooxygenase (amoA) gene sequences. Statistical tests showed that temperature affected the relative abundance of most T-RFs. Furthermore, the relative abundance of individual T-RFs differed between the two soils, and also exhibited different temperature dependence. We conclude that temperature can be an important factor regulating the community composition of methanotrophs in soil.


Assuntos
Biodiversidade , Methylococcaceae/classificação , Microbiologia do Solo , Agricultura , Proteínas de Bactérias/genética , Análise por Conglomerados , Impressões Digitais de DNA , DNA Bacteriano/genética , Metano/metabolismo , Methylococcaceae/genética , Methylococcaceae/isolamento & purificação , Methylococcaceae/metabolismo , Methylococcus , Methylocystaceae , Methylosinus , Oryza , Oxigenases/genética , Polimorfismo de Fragmento de Restrição , Temperatura , Árvores
12.
FEMS Microbiol Lett ; 255(2): 225-32, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16448499

RESUMO

Methanotrophs were enriched and isolated from polluted environments in Canada and Germany. Enrichments in low copper media were designed to specifically encourage growth of soluble methane monooxygenase (sMMO) containing organisms. The 10 isolates were characterized physiologically and genetically with one type I and nine type II methanotrophs being identified. Three key genes: 16S rRNA; pmoA and mmoX, encoding for the particulate and soluble methane monooxygenases respectively, were cloned from the isolates and sequenced. Phylogenetic analysis of these sequences identified strains, which were closely related to Methylococcus capsulatus, Methylocystis sp., Methylosinus sporium and Methylosinus trichosporium. Diversity of sMMO-containing methanotrophs detected in this and previous studies was rather narrow, both genetically and physiologically, suggesting possible constraints on genetic diversity of sMMO due to essential conservation of enzyme function.


Assuntos
Microbiologia Ambiental , Poluição Ambiental , Variação Genética , Methylococcus/classificação , Methylocystaceae/classificação , Oxigenases/genética , Cobre/metabolismo , Meios de Cultura , DNA Ribossômico/análise , Genes de RNAr , Methylococcus/enzimologia , Methylococcus/genética , Methylococcus/isolamento & purificação , Methylocystaceae/enzimologia , Methylocystaceae/genética , Methylocystaceae/isolamento & purificação , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solubilidade
13.
Mikrobiol Z ; 68(6): 3-10, 2006.
Artigo em Russo | MEDLINE | ID: mdl-17243361

RESUMO

High extracellular concentration of K+ stimulated methane oxygenation with Methylomonas rubra 15 [Russian character: see text], Methylococcus thermophilus 111 [Russian character: see text] and Methylococcus capsulatus 494 at neutral value of pH. That was determined by K+ arrival to the cells at neutral medium pH that resulted in the increase of pH difference between the exterior and interior sides of the membrane (ApH) and, respectively, in the increase of the methane oxygenation rate. Thus, methane monooxygenation depends on the availability of ion gradients on a membrane. Ionophores valinomycin and monensin inhibited methane oxygenation by the cells of Methylomonas rubra 15 [Russian character: see text] that evidenced for the methane oxygenation dependence on the protone-motive force which could be formed as the result both of protons displacement with oxygenation of methane monooxygenation products and of the gradient of potassium and sodium ions. Protonophore FCCP suppressed completely methane oxygenation in Methylococcus capsulatus 494 and M. thermophilus 111 [Russian character: see text] at neutral pH, and took no effect at the alkaline values of pH. This suggests that FCCP dissipates the proton-motive force and does not inhibit methane monooxygenase activity. The results obtained indicate that the process of methane oxygenation should be combined with energy generation in a form of the transmembrane electric charge (delta psi) and proton gradient (deltapH).


Assuntos
Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Ionóforos/farmacologia , Metano/química , Methylococcus/crescimento & desenvolvimento , Methylomonas/crescimento & desenvolvimento , Força Próton-Motriz/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Potenciais da Membrana/efeitos dos fármacos , Oxirredução , Potássio/farmacologia
14.
Mikrobiol Z ; 64(4): 11-8, 2002.
Artigo em Russo | MEDLINE | ID: mdl-12436866

RESUMO

A number of Methylococcus thermophilus 111p clones have been obtained which have acquired resistance to tetracycline. The stability of maintenance of marker resistance in these clones and also in already designed Methylomonas rubra 15sh mutants has been investigated. Chromosomal markers resistance to antibiotics or formaldehyde were maintained in the marked strains Methylococcus thermophilus 111p and Methylomonas rubra 15sh after storage in nonselective conditions. The markers of resistance to antibiotics, which were coded by plasmids (pAS8-121 and pULB113), were not always preserved in Methylomonas rubra and Methylococcus thermophilus. The stability of maintenance of chromosomal markers in the investigated methane oxidizing bacteria testifies to the fact that they can be used in laboratory and industrial practice for testing the marked bacteria on selective media. The collection of the marked bacteria-mutants Methylomonas rubra 15sh and Methylococcus thermophilus 111p has been created. These strains stably support the marker resistance to various antibiotics or formaldehyde in unselective conditions.


Assuntos
Cromossomos Bacterianos/genética , Methylococcaceae/genética , Resistência a Tetraciclina/genética , Antibacterianos/farmacologia , Meios de Cultura , Formaldeído/farmacologia , Marcadores Genéticos , Metano/metabolismo , Methylococcaceae/efeitos dos fármacos , Methylococcaceae/crescimento & desenvolvimento , Methylococcus/genética , Methylomonas/genética , Mutação , Oxirredução , Tetraciclina/farmacologia
15.
Eur J Biochem ; 268(13): 3774-82, 2001 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-11432745

RESUMO

NADH-cytochrome c oxidoreductase activity specifically expressed during growth on tetrahydrofuran was detected in cell extracts of Pseudonocardia sp. strain K1. The enzyme catalyzing this reaction was purified to apparent homogeneity by a three-step purification procedure. It was characterized as a monomer of apparent molecular mass 40 kDa. Spectroscopic studies indicated that it contains an iron-sulfur cluster and a flavin cofactor. An amount of 1 mol of flavin and 1 mol of iron was determined per mol of homogeneous protein. The N-terminal amino-acid sequence exhibited great similarity to the reductase component of various oxygenases. Cloning and sequencing of the corresponding gene designated as thmD revealed an ORF encoding a protein of 360 amino acids. An overall similarity of up to 38% was obtained to the NAD(P)H-acceptor reductase of several binuclear iron-containing mono-oxygenases. Conserved sequence motifs were identified that were similar to the chloroplast-type ferredoxin 2Fe-2S centre and to nucleotide-binding domains. Studies on the flavin cofactor showed that it could not be removed from the protein by denaturation, indicating a covalent attachment. Spectroscopic studies revealed that the flavin is at the FAD level and covalently bound to the protein via the flavin 8alpha-methyl group. Thus, the isolated reductase component is the first enzyme of this type for which a covalent attachment of the flavin has been observed.


Assuntos
Actinomycetales/enzimologia , Flavina-Adenina Dinucleotídeo/metabolismo , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , NADH Desidrogenase/química , NADH Desidrogenase/metabolismo , NAD/metabolismo , Actinomycetales/genética , Sequência de Aminoácidos , Proteínas de Bactérias , Sítios de Ligação , Sistema Livre de Células , Clonagem Molecular , Methylococcus/enzimologia , Oxigenases de Função Mista/genética , Dados de Sequência Molecular , Complexos Multienzimáticos/genética , NADH Desidrogenase/genética , Nocardia/enzimologia , Fases de Leitura Aberta , Pseudomonas/enzimologia , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
16.
Prikl Biokhim Mikrobiol ; 37(6): 702-5, 2001.
Artigo em Russo | MEDLINE | ID: mdl-11771325

RESUMO

Bacteria that produce exopolysaccharides (EPS) and use methane as the only source of carbon were selected by studying a collection of methanotroph strains: Methylococcus capsulatus E 494, 874, and 3009; M. thermophilus 111p, 112p, and 119p; Methylobacter ucrainicus 159 and 161; M. luteus 57v and 12b; Methylobacter sp. 100; Methylomonas rubra 15 sh and SK-32; Methylosinus trichosporium OV3b, OV5b and 4e; M. sporium 5, 12, A20d, and 90v; and Methylocystis parvus OVVP. Mesophilic methanotroph strains with the ribulose monophosphate way of C1-compound assimilation synthesized EPS more actively than bacteria operating the serine cycle. The dynamics of EPS synthesis by methanotrophs during chemostat cultivation was studied.


Assuntos
Metano/metabolismo , Methylobacterium/metabolismo , Methylococcus/metabolismo , Methylomonas/metabolismo , Polissacarídeos Bacterianos/biossíntese
17.
Appl Environ Microbiol ; 65(11): 4887-97, 1999 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-10543800

RESUMO

The diversity of the methanotrophic community in mildly acidic landfill cover soil was assessed by three methods: two culture-independent molecular approaches and a traditional culture-based approach. For the first of the molecular studies, two primer pairs specific for the 16S rRNA gene of validly published type I (including the former type X) and type II methanotrophs were identified and tested. These primers were used to amplify directly extracted soil DNA, and the products were used to construct type I and type II clone libraries. The second molecular approach, based on denaturing gradient gel electrophoresis (DGGE), provided profiles of the methanotrophic community members as distinguished by sequence differences in variable region 3 of the 16S ribosomal DNA. For the culturing studies, an extinction-dilution technique was employed to isolate slow-growing but numerically dominant strains. The key variables of the series of enrichment conditions were initial pH (4. 8 versus 6.8), air/CH(4)/CO(2) headspace ratio (50:45:5 versus 90:9:1), and concentration of the medium (1x nitrate minimal salts [NMS] versus 0.2x NMS). Screening of the isolates showed that the nutrient-rich 1x NMS selected for type I methanotrophs, while the nutrient-poor 0.2x NMS tended to enrich for type II methanotrophs. Partial sequencing of the 16S rRNA gene from selected clones and isolates revealed some of the same novel sequence types. Phylogenetic analysis of the type I clone library suggested the presence of a new phylotype related to the Methylobacter-Methylomicrobium group, and this was confirmed by isolating two members of this cluster. The type II clone library also suggested the existence of a novel group of related species distinct from the validly published Methylosinus and Methylocystis genera, and two members of this cluster were also successfully cultured. Partial sequencing of the pmoA gene, which codes for the 27-kDa polypeptide of the particulate methane monooxygenase, reaffirmed the phylogenetic placement of the four isolates. Finally, not all of the bands separated by DGGE could be accounted for by the clones and isolates. This polyphasic assessment of community structure demonstrates that much diversity among the obligate methane oxidizers has yet to be formally described.


Assuntos
DNA Ribossômico/genética , Methylococcaceae/classificação , Filogenia , RNA Ribossômico 16S/genética , Eliminação de Resíduos , Microbiologia do Solo , Sequência de Bases , Cromossomos Bacterianos/genética , DNA Bacteriano/genética , Georgia , Methylococcaceae/genética , Methylococcaceae/isolamento & purificação , Methylococcus/classificação , Methylomonas/classificação , Dados de Sequência Molecular , Reação em Cadeia da Polimerase/métodos , RNA Bacteriano/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...